Title: Siege design
Author: Raven Software
Date: 2-11-04

To run a map in Siege mode, set g_gametype to 7 before loading the map.

Siege entities:

info_player_siegeteam1 - This represents a spawn point for team1 on the map. You can target
these points in order to enable/disable them. This allows you to trigger new sets of spawn
points upon different events occurring on the map. There is also a "startoff" key; if you
set it non-zero the spawn point will be disabled at the map start until activated. The idealclass key will specify the ideal class to spawn on this point, and the value should correspond to
the name field in an .scl file. Classes will first check for points that match their ideal
class when spawning, and if they cannot find any, they will fall back to normal team spawn
points.

info_player_siegeteam2 - Same as above for team2.

info_siege_objective - When used, will complete a specified objective. The "side" value
specifies which team to complete an objective for ("1" for team1, "2" for team2), and
the "objective" value specifies the objective number to complete (directly corresponding
to the objective groups for the team in the .siege file, which are explained below).
The objective this entity corresponds to will have a radar icon for it based on the actual
world position of this entity. (Note however that you cannot actually see this item in the
world.)

info_siege_decomplete - Works similar to info_siege_objective and has the same fields. But
it actually sets an objective as no longer completed when used instead of completing it.
If the objective specified is already completed when it is activated, it will just do
nothing.

target_siege_end - You can target this entity to end the round immediately. You will only
want to use this as the "roundover_target" in your .siege file. Note that you do not have
to target this directly. You can trigger an in-game cinematic sequence that
plays out when one team wins, and then targets this once it finishes.

misc_siege_item - This is used as a generic "objective" entity. It is fully
customizable, and can be set up for numerous things like a flag capture item
objective or a destroyable item objective.

.siege files:

.siege files should be placed in the same directory as the map with the same name as the map
(with a .siege extension instead of a .bsp extension). They can be edited with any text-editing program like Notepad or Wordpad.

The files are grouped into sections. The first group is always the team groups, which defines
the groups to look up for each team. Following that is a roundbegin_target, which is
optional. If you specify one, it will be fired by targetname at the beginning of the round.
This allows you "script" round events to some extent. Possibilities include starting using
a target_delay with something like 2 minutes in order to cause an event to occur mid-round,
and/or starting each team off in a secluded area and opening the main map to them when the
round starts. However, following that is the "preround_state" value, which if 0 will keep players as spectators until the round actually begins, and if it's 1 the players will be ingame preround.

The following two groups define the two teams, and their objectives. The objectives and
the numbers next to them correspond directly to the objective number you give to an
info_siege_objective entity on your map. So if you give your objective entity an objective
value of "2" and a side value of "1", it will use the Objective2 group under the team 1
group for information on said objective, when that objective entity is fired off.

An example of the above might be something like this (remarks are prefaced by //):

Teams

{

team1 Rebels

team2 Imperials

}

mapgraphic "gfx/mplevels/siege2_desert"

missionname "''Desert Rescue''"

roundbegin_target ""

//this is a global target, it will be fired off if there is one when the round begins (this happens when there is at least 1 player on each team active)

Rebels

{

RequiredObjectives 5

//How many objectives must this team complete before winning the round.

Timed

1200

//this team has 120 seconds to complete its objectives, otherwise the other team wins.

UseTeam
"Siege2_Rebels"

//Specifies the name of team "theme" to use as found in .team files

TeamIcon
"gfx/2d/mp_rebel_symbol_3"

TeamColorOn
"1 0 0 1"

TeamColorOff
".7 0 0 1"

Objective1

{

goalname “Destroy the Imperial’s magic block."

//Name of the objective to display on the mission status screen.

final 0

//If 1, the round is won instantly for completeing this goal. If 0, counts toward total number of goals required. If -1, does not count toward the number of final goals.

message_team1 "Magic Block Destroyed!"

//Printed for team1 when this objective is completed.

message_team2 "Oh no!"

//same as above, for team2.

target "spawntoggle1"

//Will use this target when this objective is completed. Remove this line if not targeting anything.

sound_team1 "sound/chars/protocol/misc/siege2.mp3"

//upon completion of objective, play this sound for team1. If you want no sound, remove this line.

sound_team2 "sound/chars/protocol/misc/siege6.mp3"

//same, for team2.

objdesc "That is one dangerous block. We can’t let the Imperials have it."

//text description of objective that displays on mission status screen.

objgfx "gfx/mplevels/desert/reb_objective1"

//graphic to display for objective (usually a screenshot)

mapicon "gfx/mp/siegeicons/desert/wall_o"

//Icon to use on the Siege map in the mission status screen.

litmapicon "gfx/mp/siegeicons/desert/wall_outline"

//same as map icon, but a highlighted version.

donemapicon "gfx/mp/siegeicons/desert/wall_x"

//Icon to display when objective is completed.

mappos "120 88 80 80"

//what location to display the icon using Quake 3: Team Arena UI mapping.

}

Objective2

{

}

Objective3, 4, 5…

{

}

wonround “We destroyed the block!"

//Printed to this team if they won the round.

lostround “You have failed to destroy the magical block."

//Printed to this team if they lost the round.

roundover_sound_wewon "sound/chars/protocol/misc/40MOM013.mp3"

roundover_sound_welost "sound/chars/protocol/misc/40MOM012.mp3"

//Sounds are optional, don’t put entries if you don’t want sounds.

roundover_target "siegeisover"

//object to use if this team won - ideally ending up on a target_siege_end

attackers 1

//this actually does not affect the mission, but the bot AI will use the knowledge to decide on how to act. (Note, bots are not supported in retail Siege release)

briefing “Destroy the Imperial’s magic block before time runs out."

//Displayed on the mission briefing menu. This is the over-arcing objective for the game.

}

.team files:

All .team files should be located in ext_data/Siege/Teams. Each team has its own .team file,
and .team files can be added/created dynamically without the need to modify any sort of list
file.

Each .team file consists of a name value, a FriendlyShader value, and a Classes group. The
name value is the value which must correspond to the UseTeam value for the team in your .siege file. The FriendlyShader value specifies an actual shader, which is what will be displayed
above teammates' heads in game to other players on the team, indicating that they are on the
same team. The Classes group lists all allowable player classes for the team, in the format
of class# "classname". As an example:

name "Imperial"
FriendlyShader "sprites/team_red"

//Name of shader to display above heads of teammates (to others on this team)

Classes

{

class1

“Rocket Trooper”

class2

“Hazard Trooper”

class3, 4, etc.

}

Is an example for the Imperial team. You can keep going with classes by using class3,
class4, and so on. The class name must correspond directly to the "name" value in
the class .scl file.

.scl files:

.scl (Siege class) files are similar to .team files in the way they can be dynamically
created/added, and all .scl files should be located in the ext_data/Siege/Classes/
folder. In each .scl file there is a group called "ClassInfo" which consists of values that specify details about the class. Here is an example "Rocket Trooper" class def:

ClassInfo

{

name

"Rocket Trooper"

// corresponds to the class values in the .team file.

weapons

WP_BLASTER_PISTOL|WP_ROCKET_LAUNCHER

//see below

classflags

0

//see below

forcepowers

0

//see below

maxhealth

100

//100 is full health for an average character

maxarmor

100

startarmor

0

//100 is full armor for an average character

model

"stormtrooper"

//this is optional, if it's here it forces the model to this.

skin

"officer"

//this is optional, if it's here it forces the skin to this.

uishader

"models/players/stormtrooper/icon_officer"

//icon to display in the selection menu

class_shader

"gfx/mp/c_icon_heavy_weapons"

//determines which class to belong to

speed

0.75

//makes character faster or slower than normal

}

description

"The Rocket Trooper is equipped with a rocket launcher…"

//this appears in the selection menu when the character icon is selected.

.scl file values:

Valid weapons:
WP_STUN_BATON
WP_MELEE
WP_SABER
WP_BRYAR_PISTOL
WP_BLASTER
WP_DISRUPTOR
WP_BOWCASTER
WP_REPEATER
WP_DEMP2
WP_FLECHETTE
WP_ROCKET_LAUNCHER
WP_THERMAL
WP_TRIP_MINE
WP_DET_PACK

Multiple weapons can be assigned by separating them with a |, as seen in the
example above.

Valid Force powers:
0
FP_ALL
FP_HEAL
FP_LEVITATION
FP_SPEED
FP_PUSH
FP_PULL
FP_TELEPATHY
FP_GRIP
FP_LIGHTNING
FP_RAGE
FP_PROTECT
FP_ABSORB
FP_TEAM_HEAL
FP_TEAM_FORCE
FP_DRAIN
FP_SEE
FP_SABER_OFFENSE
FP_SABER_DEFENSE
FP_SABERTHROW

0 will mean no force powers, and FP_ALL will mean all level 3 force powers.
Otherwise, powers should be in the format of FP_NAME,# whereas # is the
power level. Powers can also be separated by | like weapons. As an example,
the following could be used to give a class level 3 in saber attack, saber
defense, saber throw, and force jump:

forcepowers FP_SABER_OFFENSE,3|FP_SABER_DEFENSE,3|FP_SABERTHROW,3|FP_LEVITATION,3

Or the following could be used to simply give the class all level 3 powers:

forcepowers FP_ALL

Valid classflags:
0

//No classflags
CFL_MORESABERDMG

//Saber attacks do more damage
CFL_STRONGAGAINSTPHYSICAL

//Is stronger against physical attacks.
CFL_FASTFORCEREGEN

//Force power takes 1/5th as long to regen.
CFL_STATVIEWER

//can view the health and current weapon's ammo on other players
CFL_HEAVYMELEE

//melee does heavy damage (very strong, can break objects normally not breakable)
CFL_SINGLE_ROCKET

//has only 1 rocket to use with rocketlauncher
CFL_CUSTOMSKEL

//class uses a custom skeleton, be sure to load on server etc (currently, only used for Rocket Troopers)
CFL_EXTRA_AMMO

//capacity for ammo is double the standard

Classflags can be combined with | as well, for example:

classflags CFL_MORESABERDMG|CFL_STRONGAGAINSTPHYSICAL

Valid sabercolor:
0 - Red
1 - Orange
2 - Yellow
3 - Green
4 - Blue
5 - Purple

So to force a class to always have a green saber you could use:

sabercolor 3

saber2color works the same as sabercolor, and affects the color of the
second saber (in the left hand) if it exists.

Valid holdables:
0

//No holdables
HI_SEEKER

//seeker drone
HI_SHIELD

//placable shield
HI_MEDPAC

//medpac - restores 25 health
HI_MEDPAC_BIG
//larger medpac, restores 50 health
HI_BINOCULARS
//Binoculars
HI_SENTRY_GUN
//Placable assault sentry gun
HI_JETPACK

//Jet pack
HI_HEALTHDISP
//health dispensing ability
HI_AMMODISP
//ammo dispensing ability

holdables can be combined with | as well, for example:

holdables HI_SEEKER|HI_SHIELD

Valid powerups:
0

//No powerups
PW_FORCE_ENLIGHTENED_LIGHT

//Adds one rank to all Force powers for light Jedi
PW_FORCE_ENLIGHTENED_DARK

//Adds one rank to all Force powers for dark Jedi
PW_FORCE_BOON

//Unlimited Force Pool
PW_YSALAMIRI

//A small lizard carried on the player, which prevents the possessor from using any Force power. However, he is unaffected by any Force power.

powerups can be combined with | as well, for example:

powerups PW_FORCE_ENLIGHTENED_LIGHT|PW_FORCE_BOON

Misc Valid values (# represents the value):

maxhealth #

//integer value for max health.
starthealth #

//same, for amount of health on spawn (default of 100, regardless of maxhealth)
startarmor #
//same, for amount of armor on spawn.
speed #
//float value, acts as a multiplier for speed (so 0.5 is half std server speed, 2 is twice as fast).
saber1 #
 //# should be an actual string which corresponds to the actual name of the saber to use.
saber2 #

//same as saber1 but for the second saber (in the left hand).
saberstyle #
 //allowable stances, can be any of the following (seperate with | for multiple): SS_FAST, SS_MEDIUM, SS_STRONG, SS_DUAL, SS_STAFF.

