Vehicle Creation

for

Jedi Academy

Michael Chang Gummelt

Basic Overview

NOTE: each step is described in more detail below...

1) Make a model with all the proper tags and surface names. LODs are encouraged.

2) Texture the model, including making a .shader for it if you want to do cool specular mapping like ours.

3) Make a .npc and a .veh file for the ship (all vehicles are, technically, NPCs, which is why you need the .npc file – for spawning it. The .veh file contains all the real meat of the vehicle). Use notepad to edit these text files.

4) Make vehicle weapon files for your vehicle (.vwp files). If you want, you can just re-use other vehicle weapons).

5) Make sounds for your vehicle (and vehicle weapon sounds if you made your own). You can reuse other vehicle sounds if you want.

6) Make effects for your vehicle (use FXed). (And vehicle weapon effects, if you made your own). You can reuse other vehicle effects if you want.

7) Make HUD graphics for your vehicle (for the radar and damage indicators).

8) Pack it all up into a .pk3

Recommended Tools

Before beginning, you should make sure you have the Jedi Academy tools that were released, specifically:

Q3data – The program that compiles .ase files to md3s

Carcass – The program that compiles .xsi files to .glms

Assimilate – The program that organizes multiple .xsi files as game animations (a GUI helper utility for Carcass)

Md3View – For viewing md3 files (and exporting them to single-frame .glm files, if needed)

ModView – For viewing glm (Ghoul model) files.

EffectsEd – For viewing/editing efx (effects) files.

ShaderEd2 – For viewing/editing shaders.

You do not need any of these tools (except, perhaps, Q3data) to make new ships, but it helps immensely if you use them.

Except for Q3data (which is Id’s tool), all of these can be found at:

http://www.jk2files.com/file.info?ID=20909
or:

http://www.lucasfiles.com/?s=&action=file&id=331
q3data is included with this Tutorial, in the same directory as this document. This tutorial assumes you know how to make a md3 with q3data (using an .ase-format mesh and a .qc file). If you don’t know how, or don’t want to mess with it, there is a great program called MilkShape that can import and export all sorts of model formats (including md3 files).

One other file you will need (if you’re making your own models and want to use Assimilate/Carcass to build your model) is the XSI Exporter plug-in we wrote for 3DS Max (the filename is XSIImporter.dli). This was released for Jedi Outcast, not Jedi Academy, so it may be difficult to find. I included it with this Tutorial (in the same directory as this document). Just place it in the “plugins” directory (or “stdplugs”?) of your 3DS Max program. I’ve been told that this is, primarily, a Max 4 plugin, so it doesn’t work in Max 6 and the Import doesn’t work in Max 5… Supposedly, there are new plugins from other sources that do pretty much the same thing for the newer versions. I don’t have those, nor have I used them, so I can’t provide links for those. Others in the modding community may have more info (see below for a link to where many of our modders exchange advice).

Once all of these tools are installed, you should be able to view the TIE fighter assets I included in their respective programs.

Detailed Steps

NOTE: Included is a directory called “TIE Fighter Files”, which contains all of the essential files for making a vehicle in Jedi Academy. This is the exact directory structure and file locations that should be used when making a new vehicle. The only change I have made is that I consolidated many of the shader definitions into three .shader files for the TIE Fighter (they were spread out among many shared shaders in the retail game) so that you could find and check out the shader definitions easily.

STEP 1: Make A Vehicle Model

First, a disclaimer. I am not an artist, I am a programmer, so I can’t give you advice on how to make a model and texture it. For the purpose of this tutorial, I am going to assume that you either know how to make a model or you are using a model someone else has made. In this section, I will discuss what specific requirements the model must have in order to work as a vehicle in our game.

There are certain construction and naming conventions you should stick to in order for the vehicle to operate properly in the game:

First thing you should do is look at the TIE Fighter’s .glm (in models/players/tie_fighter) in ModView. Note the following:

1) Where the tags are and what they are named. All except the trail ones are needed. The exhaust ones are for the engine glow effect, the muzzles are where the shots come out (controlled in the .veh file), the l_wingdamage, r_wingdamage and nosedamage ones are for attaching the trailing fire effect when the ship gets a piece blown off and spirals away to its death. The droidunit one is for ships who have a droid NPC in them. NOTE: it is very important that the muzzle tags are oriented to point in the proper direction! These will actually control the direction the projectiles come out of the ship! If they are off, the ship will be frustratingly inaccurate. The exhaust tags should also be aligned correctly (pointing backwards, away from the engine).

2) Look at the list of surfaces. Aside from all the * ones (those are the tags again), you will notice that the root surface is called "body" and the nose, l_wing1, r_wing1, l_wing2 and r_wing2 come off of the body (on the TIE Bomber, the l_wing2 and r_wing2 come off of the l_wing1 and r_wing1, this makes sense for this model). Every other surface needs to be a child of one of these and should be named with the parent surface as a prefix. So, if you have a canopy, it should be a child of, say, the body surface and should be called body_canopy. You may notice that not all of our models follow this convention, but that's because we didn't include space combat in the final game, so a couple discrepancies slipped through. Now: the reason all of this is important is twofold. Firstly, that's partly how the ship determines where it was hit, by checking the name of the surface it was hit (so naming is important). Secondly, the heirarchy is important because the nose, l_wing1, l_wing2, r_wing1 and r_wing2 call all be blown off of the body surface if they take enough damage. That means, if you have a cannon muzzle or something that is on, say, the l_wing1 and it's not a child of l_wing1, the l_wing1 surface will be turned off and you'll have a floating cannon muzzle in space. So make sure any surface that's part of a wing or nose is actually a child of that surface.

3) If you're making a ship that should animate (wings opening/closing or landing gear extending/retracting), take a look at the bones and how the animations are done for our ships (extract the X-Wing models/player/x-wing directory and view that model).

4) Make sure the origin of your ship, in ModView, is centered in the mass of it. This will make sure the bounding box, in-game, covers the ship and that the ship rotates around the proper point.

5) Turn on viewing of the bounding box on your ship in ModView. Use these numbers for the length, width and height of your ship in the .veh file. In the .npc file for your ship, use the same height number, but halve the width number, as it's actually a radius in the .npc file.

6) Make LODs, if possible. This will help performance when there are a lot of ships on screen and/or on lower-end machines. As I said, I’m not an artist, but I did ask our modeler how to make LODs and he replied:

“You just add another mesh into the root.xsi. It should have all of the surfaces your normal model has, but they're all have the additional suffix "_1" (for the first LOD). You must duplicate every surface, even if it doesn't change. Then "_2" for the second LOD, and so on according to how many LODs you want.”

7) Make pieces of the ship for when the ship gets blown to bits. These should be simple md3’s, not glms. In our example, they’re in the models/players/tie_fighter directory. You can view them with MD3View. Most important is that you make one for the left wing being blown off, one for the right and one for the nose (or front of the ship)… assuming your ship has these pieces that can/should be blown off. The section below about making effects for your vehicle covers these in more detail.

8) Make a specular map for your ship. Check out how the TIE Fighter looks. You can't see the spec map in ModView, only in-game. But you can look at the .skin of the TIE Fighter, look that up in our .shaders to see how the specular map is applied as another pass, and look at the specular texture, itself, in the models/map_objects/ships directory.

I included a community-written tutorial by a modeler. It discusses how to get your model into the game. It gets into more graphic detail about the construction of the model and briefly covers the Steps 3 and 4, below. You can read it now or continue on with this tutorial and read that one afterwards (recommended).

Duncan_10158 Importing Tutorial
NOTE: this is a local, offline version, for the online version visit: http://io.meskinaw.net/vehicle_importing_tutorial_for_ja.html
STEP 2: Texturing Your Vehicle

Okay, I’m not an artist, so I’m going to assume that you know how to skin a model if you’re making your own model (or, you’re using someone else’s model and don’t really have to worry about making your own skin). Basically, it’s just like making any model for Jedi Academy.

When you compile your ship, you should end up with a .skin file that tells the game what each “surface” (group of polygons) of the model wants to use as it’s texture (material). In the TIE Fighter’s .skin file, it looks like this:

body,models/map_objects/ships/tie_fighter_body.jpg

l_wing1,models/map_objects/ships/tie_fighter_wing.jpg

l_wing2,models/map_objects/ships/tie_fighter_wing.jpg

r_wing1,models/map_objects/ships/tie_fighter_wing.jpg

r_wing2,models/map_objects/ships/tie_fighter_wing.jpg

Pretty simple. Note that you don’t need materials/textures on the tags.

The only extra step we take is that we added a specular pass to our ships to make them look shiny and detailed as you fly them around. You will notice that, in the tie_fighter_model.shader, there are actual shader definitions for the following textures that the tie-fighter.glm uses:

models/map_objects/ships/tie_fighter_body

models/map_objects/ships/tie_fighter_wing

These are the only two materials the .skin file is looking for. What this means is that the game will look at the .shader entry for these textures and use that shader data rather than the flat texture when texturing the model in-game. Let’s look at the two shader definitions for these textures:

models/map_objects/ships/tie_fighter_body

{

 {

 map models/map_objects/ships/tie_fighter_body

 rgbGen lightingDiffuse

 }

 {

 map models/map_objects/ships/tie_fighter_spec

 blendFunc GL_SRC_ALPHA GL_ONE

 detail

 alphaGen lightingSpecular

 }

 {

 map models/map_objects/ships/tie_fighter_glow

 blendFunc GL_ONE GL_ONE

 glow

 detail

 rgbGen identity

 }

}

In this first shader definition, you can see 3 passes (or “stages”). The first one is just an opaque, flat texture – the base texture of the ship. The second pass is the specular pass. This will be blended into the flat texture on the parts of the ship where the ambient light hits it at the proper angle, relative to your viewing angle. Basically, this makes the ship pick up highlights from the surrounding light sources. The final pass is a glow pass just for the engine ports. This means that, even in complete darkness, those exhaust ports will glow at full brightness.

models/map_objects/ships/tie_fighter_wing

{

 {

 map models/map_objects/ships/tie_fighter_wing

 rgbGen lightingDiffuse

 }

 {

 map models/map_objects/ships/tie_fighter_wing_spec

 blendFunc GL_SRC_ALPHA GL_ONE

 detail

 alphaGen lightingSpecular

 }

}

In the wing shader, you only see the first base texture pass and the specular (lighting highlights) pass. There are no glowing bits on the wing, so a third pass isn’t needed.

You’ll notice in the specular passes that there is a different texture being used. These are modified versions of the base texture. Take a look at the base texture and the specular texture to see the difference:

Figure 1 - Specular TIE Fighter texture

Figure 2 - Base flat TIE Fighter texture
Notice how the specular texture has added color and detail (roughness and bumpiness) to the base texture. These highlights will only show up when the light hits the model “just so” and it makes for a very nice effect. Also notice that the black windows in the base texture are light in the specular map. That means that you’ll get a nice glare off those windows when the light is reflecting off of it.

NOTE: the specular texture can be smaller than the base texture, if you like, it will still map to the model proportionally.

Our 2D artist used a special process for making these specular maps. You can paint them by hand, if you want, or try to use the “baking” process he used (in 3DS Max 5), as he describes below:

“I reapplied the diffuse map as a bump map in 3DS Max, then set up a few lights around it. Used the render to texture proccess(baking) in MAX to create the spec map. Very little artist powers needed, just a good eye for lighting.”

Apparently, to re-export that texture so that it matched the layout (UVW mapping) of the base texture, he had to use a proprietary plug-in for max called “Monster UVW” that we cannot release… nevertheless, some modeling programs have their own UVW mapping tools you can use, so if you’re making your own ship anyway, perhaps there won’t be a problem? In any case, there should be a few different ways to make nice specular textures for your ships.
STEP 3: Make NPC and VEH Files for your Vehicle

The NPC file is simple, it’s just a very basic .npc definition that is used to actual spawn a Vehicle NPC in the game. The only rule to remember are that the name of the NPC and the name of the Vehicle must be the same. Also, note that the width and height are in the NPC file so that the bounding box is correct when it spawns. Width is a radius (so it’s half the width value in the .veh file) and height is full height (same as the height value in the .veh).

The VEH file is where all the real definitions for the Vehicle are contained.

For a description of what each field in the .veh file does, check out the template.veh (use any text editing program to view it).

STEP 4: Make VWP Vehicle Weapon Files for your Vehicle

In the .veh file, each of the vehicles 2 available weapon slots must refer to an existing .vwp (vehicle weapon) file. The .vwp describes what kind of projectile the weapon fires.

For a description of what each field in the .veh file does, check out the template.vwp (use any text editing program to view it).

STEP 5: Make Sounds for your Vehicle/Weapons

There are many sounds that vehicles and weapons can use. Some are referenced in the .veh file (these are the most important), some are referenced in the .vwp file, and some are referenced in the individual .efx (effects) files your ship uses.

VEH file sounds:

The first set of sounds used in the .veh file are the sounds for the operation of the vehicle itself. These are pretty self-explanatory. For the TIE Fighter, these are:

soundOn

"sound/vehicles/tie/on.wav"

soundLoop

"sound/vehicles/tie/loop.wav"

soundOff

"sound/vehicles/tie/off.wav"

soundFlyBy

"sound/vehicles/tie/flyby.wav"

soundFlyBy2

"sound/vehicles/tie/flyby2.wav"

soundHyper

"sound/vehicles/common/hyperstartimp.wav"

soundTurbo

"sound/vehicles/tie/flyby.wav"

As the names imply, these are the sounds for (respectively) the vehicle activating, flying, turning off, flying by (2 variations), going into hyperspace and turbo-boosting. It is recommended that you make custom sounds for your ship (even if you just filter some exiting sounds and modify them slightly).

NOTE: even if the .veh file specifies a .wav, it will also take a .mp3. Many modern sound editors can edit .mp3 files directly (or you can use some programs to convert an .mp3 to a .wav, edit the .wav and convert it back to an .mp3).

The VWP file lists the effects used in the vehicle weapon. These effects actually contain the sounds needed for each effect (see the next section for a description of what effects you need). The only sound you might set in the VWP file is the loopSound – the sound the missile loops as it flies through the air. The TIE Fighter weapon does not use this sound slot, but some missiles can (like a rocket).

STEP 6: Make Effects for your Vehicle/Weapons

The vehicles use many effects for various purposes: exhaust, weapons, damage and explosions. Here are the list of effects used in the TIE Fighter:

exhaustFX

"ships/tiefighter_exhaust"

turboFX

"ships/tiefighter_exhaust_turbo"

impactFX

"ships/scrape_sparks"

explodeFX

"ships/TF_explosion"

dmgFX

"ships/heavydmg"

injureFX

"ships/lightdmg"

noseFX

"ships/TF_nose"

lwingFX

"ships/TF_lwing"

rwingFX

"ships/TF_rwing"

The exhaustFX plays at each one of the *exhaust(1-12) tags when the ship’s speed is non-zero.

The turboFX replaces the exhaustFX when your ship is in a turbo speed boost.

The impactFX is the effect your ship plays when it physically bumps into something else. Note that this .efx file has sounds in it.

The explodeFX is played when your ship completely explodes. In our explosion effects, this effect includes explosion sounds and spawns little model pieces of the ship (in our example, these are the .md3 ship pieces in the models/player/tie_fighter directory).

The dmgFX is the effect that the ship plays when a part of the ship has taken heavy damage (red on the damage indicator). The effect is attached to the appropriate tag for the part of the ship that has sustained the damage (*nosedamage for the front, *l_wingdamage for the left, *r_wingdamage for the right, and the origin of the ship for the body/rear of the ship).

The injureFX is just like the dmgFX, but it is used for light damage (yellow on the damage indicator). When the ship part has taken heavy damage, it plays both the injureFX and the dmgFX on the appropriate tag.

The noseFX, lwingFX and rwingFX effects are actually effects that should spawn a broken-off nose/lwing/rwing (respectively) model piece that breaks away from the ship when that part of the ship has taken total damage (black on the damage indicator). That surface on the ship will turn off and this effect will be spawned. You’ll notice that this effect is actually an .md3 from the ship’s model directory with an attached fiery trail effect.

NOTE: You can also set a “trailFX” which will play at each of the *trail(1-4) tags on your ship (if the ship has those tags). This may be good for ships flying in an atmosphere (like jets do in real life).

In addition, the vehicle’s weapon uses a few effects:

muzzleFX
"ships/imp_blastermuzzleflash"

shotFX

"ships/imp_blastershot"

impactFX
"ships/imp_blasterimpact"

The muzzleFX is played on the *muzzle(1-8) tag that the shot fires from.

The shotFX effect is played on the missile/projectile itself.

The impactFX is played at the point where the missile/projectile impacts something and deals it’s damage (basically, the explosion).

STEP 7: Make HUD Graphics for your Vehicle

There are 2 basic sets of HUD graphics your vehicle will need. The simplest one is for the radar and is in gfx/menus/radar. In our TIE Fighter example, this file is called tieF.tga. In the .veh file, this is the key/value pair:

radarIcon

"gfx/menus/radar/tieF"

This file should definitely be unique for your ship as it is a graphical representation of it.

Next are the damage indicator graphics. First is the basic frame for the damage indicator. In the .veh file these are:

dmgIndicFrame
"gfx/menus/radar/circle_base_frame_imp"

dmgIndicShield
"gfx/menus/radar/circle_base_shield"

dmgIndicBackground "gfx/menus/radar/circle_base"

These files don’t have to be unique per ship, as it’s just the frame of the damage indicator… but you can customize them if you want.

The second part of the damage indicator is the four-part set of vehicle images. They represent the front of the ship, the back, left and right. Each one tints from green to red as it takes damage (to black when destroyed). In the .veh file these are:

icon_front

"gfx/menus/radar/TF_front"

icon_back

"gfx/menus/radar/TF_back"

icon_right

"gfx/menus/radar/TF_right"

icon_left

"gfx/menus/radar/TF_left"

These files should definitely be unique for your ship as they graphically represent it.

NOTE: like all the other 2D graphics, these are all .tga or .jpg files and can be edited in Paint Shop Pro or Photoshop or other graphics programs. Note that .tga files usually have an alpha channel (or layer, in Photoshop, or “mask” in Paint Shop Pro) that you need to make sure you create/modify when making your own graphic to replace a .tga.

STEP 8: Pack it all up into a PK3

A .pk3 file is just a renamed .zip file. This is what the game reads all of it’s files from.

Create a new .zip file in your “base” directory (you should always .zip up your files from the “base” directory level). Add with wildcards and make sure the “include subfolders” box is checked.

As an example, look at the included tie_fighter.pk3 (use WinZip to view it) to see what it looks like. Note how every file has it’s path associated with it (every directory below “base”). This path must be associated with the file for the game to know what directory the file was in. This is why you must have the “include subfolders” box checked.

NOTE: you do not have to (nor should you) include any files in your pk3 that are already in the game (any .efx files, shaders, textures, graphics, sounds, etc. that you’re re-using instead of replacing with your own). Leave those out of your pk3 file, the game will find them in the pk3 files that the game came with.

Once you’ve zipped up your files, you should have a .zip file. Just rename the file (select it and hit F2 or right-click on it and select “rename”) to end with .pk3 instead of .zip and you’re done! If you don’t see a .zip at the end of your file, you have your Folder Options set to hide extensions for known file types. Go to your Folder Options and uncheck the box that says to hide those extensions, then rename your file.

NOTE: Both the server and client must have the vehicle pk3 for people to use it.

NOTE: The map designer must place a vehicle in the map by placing a NPC_Vehicle and setting it’s NPC_type to the NPC name of the vehicle (in the example case, that’s “tie-fighter”). You can see how this is done by looking at the included siege_destroyer.map. Also, the designer who made all of our Siege maps has a website with a couple small tutorials on placing vehicles, etc. The link is: http://www2.ravensoft.com/users/mmajernik/
Alternately, you can spawn a vehicle from the console (if cheats are on) by typing “npc spawn vehicle vehiclename” where “vehiclename” is the name of the vehicle NPC (again, in this example, “tie-fighter”).

Have fun!

GENERAL TIPS:

1) Don’t try to make the uber-ship: super-fast, super-strong, super-rapid fire, etc. That will just be annoying and difficult to control. Keep balance in mind at all times.

2) Be careful with your effects, it can be very easy to go overboard when making effects in EffectsEd which, when actually played in-game, can chug your system, ruining your performance!

3) Play-test a lot. Once you get your model made, the fun part begins. Play with different value for the ship’s speed, handling, acceleration, rate of fire, damage, etc, etc. Start with the stats of one of our ships as a base. This way you have a reasonable beginning set of stats and a reference point from which to make your ships. Get other people to help you test your ships against each other, too.

4) Start simple. Make a new ship that modifies only a small part of one of our ships first. Maybe replace the TIE Fighter (simple because it doesn’t animate, has very few parts, only one weapon) with a new model, but don’t bother with the .veh, .vwp, .efx and sound files yet. Or, just modify the handling stats in the TIE Fighter’s .veh file to see what the different stats do. Experiment and take it one step at a time.

5) If you get stuck, ask for help. Go to the forums at www.jediknight.net and try to contact some of the other guys who have made vehicles. The community can be very helpful if you ask nicely and are polite.

6) If you’re making a model from scratch, you’re probably going to need the help of the community (specifically, some of the people I just mentioned in #5, above). I don’t really cover that in this tutorial, primarily because I don’t exactly know how they do it! (
FAQ:

Q: I read your section about making LODs, but I have a question: what about the bones and tags and heiarchy? Do I need to make a copy of the bones and tags and connect them to the new meshes or what. Or do I just make the new meshes and not worry about the bones and tags. And how do I adjust for it in the heiarchy. Will say body_01 be a child of body? Okay so it was more than one question.

A: You just need the extra meshes, not extra bones or tags... and the hierarchy should be the same(?)

Q: Can you make vehicles do unlimited pitch and rolls?

A: Yeah, you can set the pitchlimit and rolllimit to -1 and there is no limit, you can rotate 360 degrees on every axis. The only problem is that the camera kind of freaks out when you do that... :/ It can be kind of confusing.

Q: My ship spawns with it’s nose in the ground, what’s up?

A: The ship is being spawned in the air. Place the vehicle in the map so that the NPC_Vehicle is on the ground.

Q: How do you get the ship to hang in place in the map, like the Imperial ships?

A: Check the “suspended” flag on the NPC_vehicle. It will detach when someone gets in it (uses it or lands on top of it).

Q: I can’t make maps, how do I spawn my vehicle in the map to test it?

A: You can spawn a vehicle from the console (if cheats are on – use “devmap” instead of “map” to start the map). Type “npc spawn vehicle vehiclename” where “vehiclename” is the name of the vehicle NPC (again, in this example, “tie-fighter”).

Q: Okay, I can see my vehicle in the game, but I’m not sure my bounding box is right… is there any way I can see it?

A: Well, you can load up your vehicle in ModView and turn on viewing of the bounding box. Alternately, you can see it dynamically reshape itself (according to the .veh file’s length, width and height values) in the game… on the console, type “cg_showvehbounds 1”. When you get in a ship, it will show you the current bounding box of the ship. Note that this is only for collision of the vehicle against other things – enemy projectiles must actually hit a surface on the ship.

Q: I want to make a car! How do I do that?

A: You can’t, we never made a vehicle type for cars, just animated animals (like the tauntaun, wampa and rancor vehicles), hover vehicles (like the swoop bike) and flying vehicles (like all the fighters). You may be able to simulate something, but if you want true wheeled vehicle simulation, you’re going to have to make a mod (we have released the multiplayer code, so go for it!)

Q: How do I make an animal vehicle, like the tauntaun?

A: It’s just like making a normal NPC, except you have to make the .npc and .veh files and add a *rider tag into the model and make sure all the BOTH_VT_… animations are mapped to proper anims. As a test, I converted the wampa and the rancor to be ridable animal vehicles. Check out their animation.cfgs to see how I mapped the BOTH_VT anim slots to existing anims in the model.

Q: Can I make my animal vehicle attack on it’s own or when I press the fire button?

A: Well, not without writing specific code for it, but it wouldn’t be too difficult to do for a programmer who poked around in the animal vehicle code and the AI for a little while.

Q: I’m trying to make the landing gear on my ship go up and down… my problem is that, when the ship spawns in, the landing gear is retracted. I want it to start down. How do I do that?

A: I didn’t cover animating vehicles in this document, so I commend you for even attempting it! I imagine you’re using one of our vehicles as a reference (if not, you should). Open our X-Wing .glm in ModView and check out the animations (sequences). Notice that the BOTH_VS_IDLE animation uses the last frame of the BOTH_GEARS_CLOSE as it’s single frame. The BOTH_VS_IDLE is the animation the ship plays when it first spawns in and is at rest. Use Assimilate (or edit the animation.cfg by hand, if you’re feeling lucky) to accomplish this.

Q: Something is wrong…

…my ship crashes when I take off…

…one of the wings isn’t showing up…

… (and other variants)

A: The most important thing to check is in the .glm file, itself. This is where most of the big, bad mistakes can be made. Make absolutely certain that the bone(s) are named according to the conventions listed in Step 1 of this tutorial. Make sure the bone hierarchies are correct (if you have more than one). Do the same for the surfaces – check their naming and hierarchy. See if you somehow ended up with duplicate surfaces (you cloned it one too many times). See if you have two surfaces in the same place (perhaps you mirrored your ship and something bad happened, as it often can…) Again, I’m not a modeler, so I don’t know everything that can go wrong, but double-check your model carefully.

Q: I read this whole tutorial, but it doesn’t tell me how to actually make a vehicle model, or even what program to use?

A: Yeah, sorry about that, but I’m not a modeler, only a programmer who works with the modelers who make the vehicles. I did ask a vehicle modder who has successfully made quite a few vehicles for Jedi Academy and he replied:

“Well, I build my models in 3DS Max 5. Others I know use Milskhape or Lightwave or gmax. But the only way that we know of in the community to make vehicles and characters is to use 3DS Max. So even if you build you models in another program, you're still gonna need to run it through 3DS Max to convert it to a vehicle or character depending on what your making. For example, one guy I know who's very good, build all his models in Lightwave, and then he gets help from others who have 3DS Max to turn his models into vehicles. But yeah, I build my models in Max, and add the bones, tags, animations, and hierarchy and what not there. Then I use the XSI exporter plug-in to export the model to .xsi format. Then once that's done, I use Assimilate with the carcass compiler to convert the xsi file to both a .glm and a .gla. And the rest is easy. I never heard of q3data, so I'm pretty sure nobody uses it. What exactly is that and what's it do.”

The XSI exporter plug-in for 3DS Max was released for Jedi Outcast. See the above section labeled “Recommended Tools” for instructions.

